
Your Name Solutions .

Foundations of Computer Science
Exam 1

Lynn Andrea Stein
Franklin W. Olin College of Engineering

revised 1

Your Name Solutions .

This exam is intended as a two hour sit-down examination. However, you may
self-administer it at any time between 10am on Tuesday October 5 and 4pm on Friday
October 8, 2004. Those who wish to take the exam during Tuesday’s class period may
do so. Regardless of when you complete the exam, you may not discuss it with anyone
until after all exams have been turned in at 4pm on Friday, October 8. (Exams should
be turned in to Holly Bennett in OC360 (or thereabouts).

The exam is intended to be completed in a single sitting. You may take more
than two hours to complete the examination, but you should not consider this an
unlimited-time exam. (Taking four hours would be fine, though presumably
unnecessary; taking 20 hours would not. Exercise reasonable judgement.) In particular,
anything you can’t solve within a reasonable amount of time is not likely to be worth an
excessive effort.

This exam is closed book. You are not permitted to use any materials, or to
consult with any people, beyond the exam itself or the course instructor. (I will be on
campus Tuesday through Thursday and should be available by phone, email, and IM
for the duration of the exam interval. Please exercise reasonable discretion and don’t
call outside of the hours of 8am-10:30pm.)

You may take reasonable breaks during the exam, but you are expected to honor
the spirit of the single sitting administration. If possible, avoid mealtimes,
conversations, phone calls, IMs, and other interpersonal interactions, though you may
get up and walk around, have a snack, etc.

It is perfectly acceptable – even preferable – to hand write your answers in this
exam booklet or on blank paper that you provide. If you wish to type your exam, you
may use a computer but (a) you must not use resources on the computer other than
your word processor (b) you should avoid checking email during the exam, except if
that is your means of contacting me , and then only to read my email (c) you should not
IM with people other than me.

Whether your exam is typed or hand written, each problem should be clearly
identified, separated from other problems, and legible. Any extra pages should be
stapled in order to the back of this exam and, on the problem page in this booklet, you
should write “see attached page (#).” You may also continue solutions on the backs of
pages or on additional pages, but these should also be clearly labeled and the exam
book should note where the solution can be found.

After you have finished this exam, in the space provided on the final page or on
an attached piece of paper, please write out the phrase “I have neither given nor
received unauthorized assistance during the completion of this work. I agree not to
discuss this exam in any way until after 4pm on October 8.” Please sign your name to
indicate that you have abided by all rules and conducted yourself according to the Olin
College Honor Code. If you cannot write out this phrase and sign your name to it,
please explain. 1

1 This text courtesy of Professor Sarah Spence.

Your Name Solutions .

Page 3 of 13

1. Linear Data Types
For this question, you may use any computer language of your choice provided that it’s
one that I know or can infer from your code. You may also use any reasonable
pseudocode notation.

A. Complete the following definition of the QUEUE abstract data type:

make-empty-queue: returns a queue containing no elements.
queue-empty? Q: returns boolean true if queue is empty, false otherwise
enqueue elt Q: returns a queue containing all of the elements in Q as well as elt as the
most recently added item
dequeue Q: returns a queue containing all of the elements in Q except the front

element, i.e., the one that has been in the queue for the longest time, the one (of

the elements in the queue) that was added first. .

front Q: returns the element at the front of Q, i.e., the one that has been in

the queue for the longest time, the one (of the elements in the queue) that was

added first. .

B. What is returned by
front enqueue a dequeue dequeue enqueue b enqueue c enqueue d enqueue e
enqueue f dequeue enqueue g enqueue h make-empty-queue
?

 f .

Draw a picture of the queue on which this front operation is performed. (You should
not include its history, just its current state.)

e d c b afront

Your Name Solutions .

Page 4 of 13

C. Complete the following definition of the STACK abstract data type. The small
roman numerals indicate where additional operations should be supplied:

make-empty-stack: returns a stack containing no elements.
stack-empty? stack: returns boolean true if stack is empty, false otherwise

i. push elt stack: returns a stack containing all of the elements in stack as

well as elt on the top of the stack .

ii. pop stack: returns a stack containing all of the elements in stack except

the top element .

iii. top stack: returns the top element of stack; stack remains unchanged .

D. Implement the queue abstract data type using two stacks, smoke and mirrors. In
other words, assume that you have two stacks, smoke and mirrors, (defined
according to your abstraction) and use them and their operations to define the five
queue operations. You should not need to use any additional machinery.

make-empty-queue starts with both smoke and mirrors empty.

queue-empty? Q returns true if stack-empty? smoke AND stack-empty? mirrors.

enqueue elt Q does if stack-empty? smoke
 while not stack-empty? mirrors do
 push (top mirrors) smoke; pop mirrors
 push elt smoke

dequeue Q does if stack-empty? mirrors
 while not stack-empty? smoke do
 push (top smoke) mirrors; pop smoke
 pop mirrors

front Q does if stack-empty? mirrors
 while not stack-empty? smoke do
 push (top smoke) mirrors; pop smoke
 top mirrors

Your Name Solutions .

Page 5 of 13

2 Regular Expressions and Finite State Machines
A. Write a regular expression to describe the set of strings over alphabet {a, b, c} that

contains at least one a.

 (a U b U c)* a (a U b U c)* but also (b U c)* a (a U b U c)* etc. .

B. Write a regular expression to describe the set of strings over alphabet {a, b, c} that
contains at least one a and at least one b.

 ((a U b U c)* a (a U b U c)* b (a U b U c)*) U ((a U b U c)* b (a U b U c)* a (a U b U c)*)

but also ((b U c)* a (a U c)* b (a U b U c)*) U ((a U c)* b (b U a)* a (a U b U c)*) .

or c* ((a (a U c)* b) U (b (b U c)* a)) (a U b U c)* etc. .

C. Give an English description of the language of the following regular expression:
 ((01) U (10))*

 All strings over the alphabet {0, 1} that contain an even number of .

characters, whose first and second characters are not the same, and with no

more than two of the same character in a row. .

D. Draw a nondeterministic finite state machine corresponding to the following
regular expression:

((a U b)(c*)(a U b)*) U a*c

a,b

a,b

c

a
c

e

e

This is , of
course, only
one possible
answer.

Your Name Solutions .

Page 6 of 13

 (this question continues on the next page)
E. Consider the following automaton.

In what state(s) will the automaton be after receipt of each character in the string
1010101?

e {p}

1 {q}

0 {r}

1 {p}

0 {q,s}

1 {p,q,r}

0 {q,r,s}

1 {p,q,r}

Does this automaton accept this string? Explain.

0,1

0

1

0,1

0

1

1

p

q

s

r

Your Name Solutions .

Page 7 of 13

 Yes. q is an accepting state and a nondeterministic automaton accepts if some
computation of the automaton on the string leads to an accepting state.

Your Name Solutions .

Page 8 of 13

3 Lisp programming
The following code defines part of the implementation of a SET data type in terms of
Lisp lists.

;; the one and only empty set Ø, also known as {}
(define the-empty-set '())

;; is the set empty?
(define (set-empty? set)
 (null? set)) ;; or (eq? set the-empty-set)

;; selectors to extract elements:
(define set-first car)
(define set-rest cdr)

We also need a way to add elements to a set, but let’s leave that for part B.

A. Complete the following definition of the set-member? function:

;; is elt a member of set? Check recursively....

(define (set-member? elt set)

 (cond ((set-empty? set) #f)

 ((eqv? elt (set-first set)) #t) ;; eqv? is like eq?

 (else (set-member? elt (set-rest set)))))

Remember, good code preserves data abstractions.

(this question continues on the next page)

Your Name Solutions .

Page 9 of 13

B. Constructing sets poses some interesting questions. For example, we might
choose the simplest definition of insertion:

;; add an element to a set
(define set-insert cons)

Alternately, we might choose a definition that preserves the property that an element
cannot be in a set more than once:

;; add an element to a set only if it’s not already there
(define (set-insert elt set)
 (if (set-member? elt set) ;; if elt’s already a member
 set ;; just return set
 (cons elt set))) ;; else add elt to set

Briefly describe the benefits and costs of the member-verifying version of set-insert.
Indicate under what circumstances you would prefer one version over the other. Also
indicate any implications that you see for other set operations. (Your answer should be
a few sentences long, but not an essay!)

 The first version of set-insert runs in constant time, independent of the size of the set.

Therefore, it is a more efficient operation than the second (considered in isolation). The

second version of set-insert runs in time proportional to the length of the list (best case

constant, worst case proportional to n – if the element is missing or simply at the end of

the list – and average case proportional to n/2 if the element is present, to n if the

element is absent, i.e., Theta(n) overall). .

 The advantage of the second implementation is that an element is only represented in

the set (at most) once. This makes some of the other set operations easier to implement

(although it turns out that the rest of the implementations given here work either way)

and, more importantly, it keeps the set size small if it is likely that there will be many

redundant insertions. I’d choose the set-member? checking implementation if I knew that

there were likely to be a lot of redundant insertions – so I’d save a lot of storage space

and keep n small – and the simpler implementation if I knew that most elements wouldn’t

be inserted redundantly (like the power set application in the optional problem, which only

inserts each element once). .

 As is often the case, there are multiple variants on this answer. .

 (this question continues on the next page)

Your Name Solutions .

Page 10 of 13

C. The following additional definitions complete the SET data type implementation.

;; set1 union set2 just glues the lists together.
;; Note that it doesn’t eliminate duplicates, though.
(define set-union append)

;; set1 intersection set2 produces a set containing
;; only those elements that belong to both sets.
(define (set-intersection set1 set2)
 (filter (lambda (elt) (set-member? elt set2)) set1))

;; set1 minus set2 produces a set containing those elements
;; of set1 not also present in set2.
(define (set-difference set1 set2)
 (filter (lambda (elt) (not (set-member? elt set2))) set1))

Complete the definitions of append and filter

;; (append L1 L2) returns a new list that contains the elements
;; of L1 and L2 together. For example,
;; (append '(a b) '(c d)) returns (a b c d) and
;; (append '(1 (2 3) 4) '((5 6) 7)) returns (1 (2 3) 4 (5 6) 7)

(define (append L1 L2)

 (cond ((null? L1) L2)

 (else (cons (car L1) (append (cdr L1) L2)))))

;; (filter tst lst) takes
;; a test procedure that in turn returns a boolean
;; – see set-intersection or set-difference, above –
;; and a list.
;; (filter tst lst) returns a list containing those elements
;; of lst that pass the test

(define (filter tst lst)

 (cond ((null? lst) '())

 ((tst lst) (cons (car lst)

 (filter tst (cdr lst))))

 (else (filter tst (cdr lst)))))

Your Name Solutions .

Page 11 of 13

4 Pumping Lemma
The Pumping Lemma says:

For every Regular Language L,
There exists a constant n (generally corresponding to the number of states in

L’s FSM)
And for every string w in the language L with length > n

The string w can be split into xyz
with |xy| ≤ n (there are at most n characters in xy)
and |y| > 0 (y isn’t the empty string)

so that xyiz is also in L for all values of i

Using the pumping lemma, prove that the following is not a regular language:

The language containing all strings of 2k 1s, i.e., e, 1, 11, 1111, 11111111, etc., but not 111
or 111111.

(Hint: Assume that the language is regular and that there is some constant n for
which the Pumping Lemma holds. Show that this would mean that a string not
actually in the language would have to be there.)

 Assume that L is regular. Then there must be some constant, n, for which the
Pumping Lemma holds. (After all, that’s what the hint says, right?)
 Consider a power of 2 that is at least as large as n. That is, let m = 2q, for
some integer q, so that m ≥ n. Then (by the definition of L) the string 1m is in L.
 By the Pumping Lemma, there must be some way to break 1m into xyz – with
|y| > 0 and |xy| ≤ n – so that xy iz is in L for all i ≥ 0. Since 1m consists entirely
of 1s, we can focus on the lengths of x, y, and z. In particular, m = |x| + |y| + |z|.
There are two possibilities:
 |xy| < n. In this case, the Pumping Lemma says that xy 2z should be in L. This
is 1|x|1|y|1|y|1|z|, i.e., a string of |x| + |y| + |z| + |y| = m + |y| ones. But if m is a
power of 2, the next smallest power of 2 is 2m, i.e., 2m+1. Since 0 < |y| < n ≤ m,
1|x|1|y|1|y|1|z| – xy 2z – is too long to be 1m and too short to be 12m.
 |xy| = n. In this case, |y| might be n which, in turn, might be m, so xy 2z
might be 12m. But xy 3z would be 13m, and 3m is not a power of 2.
 Since 1m is a sufficiently long string in L but can’t be pumped (i.e., there’s no
way to break it into appropriate xyz so that xy iz is in L for all i ≥ 0), L must not
be regular.

This is the end of the required portion of the exam. The problem on the next page is an optional
bonus (extra credit) problem. However, you MUST fill in the honor code declaration on the
final page of this examination booklet. Also, please make certain that you have put your name
on every page of this exam booklet and any attached pages.

Your Name Solutions .

Page 12 of 13

5 Bonus Problem (Extra Credit; Optional):
We can use the set data type of problem 3 to build a power set generator. The following
scheme procedure takes a set as argument and returns the set of all possible subsets of
that set. (This would be useful, for example, if we were converting a nondeterministic
FSM to a deterministic FSM….)

1(define (all-possible-subsets set)
2. (cond ((set-empty? set) aps-base-case)
3. (else
4. (let ((all-but-first (all-possible-subsets (set-rest set))))
5. (let ((all-with-first (map (lambda (p)
6. (set-insert (set-first set)
7. p))
8. all-but-first)))
9. (set-union all-but-first all-with-first))))))

where map is

10. (define (map proc lst)
11. (cond ((null? lst) '())
12. (else (cons (proc (car lst)) (map proc (cdr lst))))))

A. What should the value of aps-base-case be, i.e., what is the base case of the all-possible-
subsets recursion?

 '(()) ;; the list containing one element, that element being the empty list.

B. What are the values of all-but-first and all-with-first after the evaluations of the lets,
i.e., when line 9 is about to be evaluated in the invocation of

 (all-possible-subsets '(a b c))

all-but-first: (() (c) (b) (b c)) .

all-with-first: ((a) (a c) (a b) (a b c)) .

C. What is the order of growth of this procedure (in terms of Q and the size of set)?
Explain your answer in terms of the scheme code. Use line numbers. (You may answer
this question on the back of a page or on a separate sheet, but indicate here where I can
find it.)
 This procedure grows as Theta(2n). To see this, imagine that applying it to a
set of n elements produces a result of length p, requiring (at least) p steps. Then
a set of n+1 elements would produce a result of length 2p – all-but-first and all-
with-first – which is a tree recursion and sums to 2n.

Your Name Solutions .

Page 13 of 13

6 Honor Code Declaration

Please write out and sign the honor code declaration from the instructions on page 2 of
this exam in the space below or provide an explanation here as to why you cannot do
so.

