
FOCS Fall 2004 Written Assignment 3 Solution Set Page 1 of 12

WrittenAssignment3 Solution Set
Don't forget to tell me with whom you collaborated (or that you didn't).

Grammars and Interpreters

1. In class, we discussed a lisp syntax for a subset of scheme. Write a grammar that
corresponds to the following fragments of scheme:

• non-negative integers
• alphabetic names
• operations +!-!*!/ and predicates >!<!=!<=!>=
• if expressions (the most common form only), e.g. (if!a!b!c))
• lambda expressions, e.g. (lambda!(x)!x)
• define expressions (unsugared form only), e.g., (define!x!3)
• applications (i.e., applying an appropriate thing to an appropriate set of arguments)

There was enough ambiguity in this question that there are several correct answers. Some
specific incorrect items are indicated in this solution.

We will use S as the start symbol of our grammar. Note that this grammar is for a single
S-expression. A scheme program might better be characterized as S+, i.e., one or more S-
expressions in sequence.

Boldface indicates terminals. [..], |, and * are used for ranges, alternatives, and Kleene
star, respectively. ;; is used to mark comments.

S -> Number
S -> Name
S -> Built-in ;; Technically, these are just names in real Scheme.
S -> (if S S S) ;; Note NOT (if S*); only 3 Ss (or 2 for real Scheme)
S -> (lambda (Name*) S) ;; Note NOT (lambda (S*) S)

;; Also, real Scheme lambdas are even more general.
S -> (define Name S) ;; Note NOT (define S S) nor (define Name S*)
S -> (S S*) ;; This allows (Number S*), which is syntactically legal

;; but doesn’t run well.1

Number -> 0
Number -> [1..9][0..9]*

Name -> [a..zA..Z][a..zA..Z]* ;; Full scheme also includes symbols and numerals

Built-in -> + | - | * | / | > | < | = | <= | >= | <> ;; oops, forgot the last in the pset

1 It also allows a define as its first S-expression, which is technically not syntactically
legal, but I didn’t expect you to know that. Some lisps allow that, syntactically.

FOCS Fall 2004 Written Assignment 3 Solution Set Page 2 of 12

There are oodles of other correct grammars. Important points:
1. if should allow only 2 or 3 expressions, not 0 or 1 or 4 or more.
2. if should allow any S-expression as its test, consequent, and alternative.
3. lambda should allow only names as parameters, not S-expressions
4. define requires exactly a Name and an S-expression, not two S-expressions and not

more than one S-expression after the Name.
5. applications must not be restricted to Built-ins; in particular, lambda-expressions, if-

expressions, and names must be legal in some application form.

2. Write a factorial program in your subset of lisp.

Here’s a basic one. There are lots of variants: (define factorial
 (lambda (n)
 (if (= n 1)
 1
 (* n (factorial (- n 1)))))

3. Draw a parse tree for your lisp factorial program according to your grammar. Use a
representation in which all terminal symbols appear in the leaves of the parse tree; each
interior node should be labeled with the head of the production that it (and its children)
represent.

S
. | .
(define Name S)
		.	.																										
		(lambda (N*) S)																											
							.	.																					
							(if S S S)																						
											.	.																	
											(S S*)																		
													.	.															
													S S																
														.	.														
														(S S*)															
															Name S														
																				
									(S S*)						(S S*)														
												\										\							
										S S S			BI				S SS												
					N				BI N#	#		N			BI N#														
(define factorial (lambda (n) (if (= n 1) 1 (* n (factorial (- n 1))))))

FOCS Fall 2004 Written Assignment 3 Solution Set Page 3 of 12

Note that in this parse tree BI, N, and # are abbreviations for Built-in, Name, and Number
respectively. (I couldn’t make it pretty and verbose at the same time.)

There are many correct ways to draw a parse tree, and of course each parse tree
presumes a particular grammar, so yours will probably look different from mine. A
different parse tree representation (using the same factorial program and the same
grammar) is included with the solution to question 7. The keys to a correct parse tree
are:

• Every terminal must be represented explicitly.
• It must be possible to determine what derivation (what grammar rules) produced each

terminal.
• The parse tree must have the start symbol at its root and every derivation should

correspond to a production of the grammar.

4. Consider a simplified block-structured programming language in which the following
statement types exist:

• conditionals of the form if expr then stmt else stmt
• loops of the form while expr do stmt
• blocks of the form begin stmt *end
• assignments of the form var := expr

Expressions should include the same operations and predicates as in scheme; names should
be alphabetic only; numbers should be non-negative integers. Write a grammar for this
language.

This language distinguishes expressions from statements, so our grammar has two sections
for these. (Stmt is our start symbol)

Stmt -> if Expr then Stmt else Stmt ;;
Stmt -> while Expr do Stmt ;;
Stmt -> begin Stmt* end ;;
Stmt -> Name := Expr ;;

Expr -> Expr Op Expr
Expr -> Number
Expr -> Name

We can reuse several of the productions from our lisp grammar to complete this one:

Number -> 0
Number -> [1..9][0..9]*

Name -> [a..zA..Z][a..zA..Z]*

Op -> + | - | * | / | > | < | = | <= | >= ;; changed nonterminal name here to reflect role

FOCS Fall 2004 Written Assignment 3 Solution Set Page 4 of 12

Important considerations:
• Expressions and statements are different.
• A while loop only has a single statement in its body.

5. Write a factorial program in this language. Because this language does not include the
definition of procedures, functions, or subroutines, you may assume that there is a variable
n that contains the number to be factorial'd and that your result should wind up in a
variable named ans .

There are of course lots of ways to do this. Here’s one:

begin
 ans = 1
 while n > 1 do
 begin
 ans = n * ans
 n = n – 1
 end
end

I’ve used white space to make this easier to read, but note that the program would be
legal if formatted differently. For example,

begin ans = 1 while n > 1 do begin ans = n * ans n = n – 1 end end

should have the same parse tree, etc. (and it does!)

FOCS Fall 2004 Written Assignment 3 Solution Set Page 5 of 12

6. Draw a parse tree for your factorial program according to your grammar. Use a
representation in which all terminal symbols appear in the leaves of the parse tree; each
interior node should be labeled with the head of the production that it (and its children)
represent.

7. Observing the parse trees for your two programs, try to explain why lisp is generally
viewed as an easier language for which to write an interpreter.

Interestingly, many students said that they found the parse tree for the block structured
language easier. This wasn’t actually what I was getting at; the grammar for scheme may
be either easier or harder, depending on how you think about it. (It has really only one
major nonterminal – S-expressions – and so its productions all look sort-of the same. The
added variety of the block structured language creates more complexity but also more
structure.)

Stmt
. | .
begin Stmt* end

| . | . |
| Stmt Stmt |
	.	.																		
	while Expr do Stmt																			
				.	.															
				begin Stmt* end																
					.	.														
					Stmt Stmt															
																	
					Name:= Expr Name:= Expr															
							Expr		Expr											
.									
Name :=Expr	XOpX				X Op X		X OpX													
		#	N	#				N	N		N Op#									

begin ans := 1 while n > 1 do begin ans := n * ans n := n – 1 end end

FOCS Fall 2004 Written Assignment 3 Solution Set Page 6 of 12

The reason that lisp is easier to interpret is that the lisp program structure – the list
structured representation of the lisp program – is the parse tree. I’ve redrawn the parse
tree in an attempt to show this:

The list structure for the lisp program is just a lisp representation of this tree (without
the labels on the internal nodes…but note that these labels are almost exclusively S in
any case!)

(define factorial
(lambda

(n) (if
(= 1 (*

n 1) (factorial
(-

n 1))))))
Automata

1. [warmup] Consider two regular languages, L 1and L 2, each with a corresponding finite
state automaton (F 1and F 2, respectively). Explain how to construct a finite state state
automaton that recognizes L 1union L 2, i.e., the language that includes all strings that are
either in L 1or in L 2. Demonstrate this for the languages 0*1* and (01)*.

The intuition is that we can run either automata on the string and if it accepts, we’re
done. We just need to guess correctly which one to run, which we can do by constructing
a nondeterministic FSA that makes the guess for us. (Remember that an NFA accepts a

S
. | .
(define factorial S)

. | .
(lambda | S)

(n) . | .
(if S S S)

. | . | . | .
(S S*) 1 (S S*)
BI N# BI . | .
= n 1 | N S

* n . | .
(S S*)

Name . | .
factorial (S S*)

BI N #
- n 1

FOCS Fall 2004 Written Assignment 3 Solution Set Page 7 of 12

string whenever there’s some path through it that accepts that string.)

Create a new FSM that contains the union of the states of F1 and F2 (renamed, if
necessary, so there’s no confusion). Add a new start state, S, with epsilon-transitions to
the start states of F1 and F2. The rest of the transition table is the transition tables of
F1 and F2 (and, since their states are separate, there are no transitions between states of
F1 and states of F2 or vice versa). The set of accepting states of this new automata is
the union of the accepting states of the F1 and F2.

Even more formally:

If F1 = < Q, Sigma, q0, Delta, F > and F2 = < P, Sigma’, p0, Delta’, G > (we assume Q and P
are disjoint and can rename states to make this so) then L1 U L2 is recognized by the
automaton

< Q U P,
Sigma U Sigma’,
S,
Delta U Delta’ U {(S, epsilon, q0), (S, epsilon, p0)},
F U G >

2. [warmup] For regular languages L 1and L 2, explain how to construct a finite state
automaton that recognizes L 1intersection L 2, i.e., the language that includes all strings
that are in both L1and in L 2. Demonstrate this for the languages 0*1* and ((0U1)(0U1))*.

This time, the intuition is that we want to run both automata simultaneously. If they
both accept the string, then we should accept it. We can’t use the same trick, though,
because an NFA accepts whenever some computation accepts and we need to be sure that
both automata accept. So we’ll make a new FSA that keeps track of both automata
simultaneously, sort-of like running them both and keeping a finger on which state each
one’s in. (There’s a superficial resemblance to the NFA->DFA transformation, though the
construction is slightly different.)

As before, F1 = < Q, Sigma, q0, Delta, F > and F2 = < P, Sigma’, p0, Delta’, G >

Create a new FSM whose states will be named (qi, pj), where qi is a state of F1 and pj is a
state of F2 (i.e., qi in Q, pj in P). Start in the state (q0, p0), where q0 and p0 are the
start states of F1 and F2 respectively. For each symbol x in Sigma, Sigma’ (actually we
only care about their intersection), add all transitions ((qi, pj), x, (qk, pl)) for which (qi, x,
qk) is a transition of F1 and (pj, x, pl) is a transition of F2; no other transitions. A state
(qi, pj) is an accepting state of this new automaton exactly when qi is an accepting state
of F1 AND pj is an accepting state of F2.

In other words, L1 intersect L2 is recognized by the automaton
< Q X P,

Sigma intersect Sigma’,
(q0, p0),

FOCS Fall 2004 Written Assignment 3 Solution Set Page 8 of 12

{ ((qi, pj), x, (qk, pl)) | qi, qk in Q; pj, pl in P;
x in ((Sigma intersect Sigma’) U epsilon);
(qi, x, qk) in Delta, (pj, x, pl) in Delta’}

{(qi, pj) | qi in F and pj in G} >2

3. Let C be a context free language and R be a regular language. Prove that the language C
intersect R is context free (Sipser). Hint: Show how to construct a PDA that recognizes
this language.

This is really the same problem as the previous one except that now one of our FSMs is a
PDA. PDAs can behave like FSMs (by ignoring the stack), but an FSM can’t behave like a
PDA. This means that we’ll need a PDA to simulate running both machines at the same
time.

The only hard part of the construction (beyond #2, which is really the key to this
construction, too) concerns how to handle the stack transitions. In the previous problem,
we simulated each FSM separately, with the first part of the state keeping track of the
first FSM and the second part of the state keeping track of the second FSM. This is
exactly what we do here. The first part of the state tracks the FSM, which doesn’t care
about the stack. The second part of the state tracks the PDA, which does, So a
transition can happen exactly when the FSM-part of the state can take its transition and
the PDA-part can take its transition. That is, we only care about the stack-state for the
PDA-part of the (new, combined) transition.

Formally, let the FSM for R be

F = < StatesF,

AlphabetF,

startStateF,

TransitionsF,

AcceptingStatesF >
and let the PDA for C be

P = < StatesP,

AlphabetP,

StackSymbolsP,

TransitionsP,

startStateP,

2 Subtle nit: This construction has a minor bug with respect to epsilon transitions. Right now, the
new FSM can take an epsilon transition only if both original FSMs explicitly include the relevant
epsilon transition. We can fix this by adding to each original FSM (before combining them) all
transitions (q, epsilon, q) for every state q of that FSM. (These transitions say it’s OK to stay in
the same state if you don’t consume any input.)

FOCS Fall 2004 Written Assignment 3 Solution Set Page 9 of 12

StackStartSymbolP,

AcceptingStatesP >

Then we can construct a new PDA that accepts exactly if both of the other machines
would accept:

solution = < { (q, r) | q in StatesF and r in StatesP },

AlphabetF intersect AlphabetP,

StackSymbolsP,

{ ((fState, pState), input, stackTop) -> ((newF, newP), newStack)

| fState, newF in StatesF;

pState, newP in StatesP;

input in ((AlphabetF intersect AlphabetP) U epsilon);

stackTop, newStack in (StackSymbolsP U epsilon);

(fState, input) -> newF in TransitionsF,
(pState, input, stackTop) -> (newP, newStack) in

TransitionsP }

(startStateF, startStateP),

StackStartSymbolP,

{ (q, r) | q in AcceptingStatesF and r in AcceptingStatesP } >

4. Using the previous proof, show that the language A = { w | w in {a, b, c}* and contains an
equal number of a's, b's, and c's} is not context free. (Sipser) Note that this language is
not anbncn.

First, note that the reason why A is not anbncn is that the letters in a string in A may
appear in any order. For example, cabbac and abbacc are both in A, but not in anbncn.

Now assume by way of contradition that the specified language – A = { w | w in {a,
b, c}* and contains an equal number of a's, b's, and c's} – is context free. (If we do get a
contradiction, we will have proved that A is not context free, which is what we want.)

If A is context free, then there is a PDA that recognizes it. Call this machine P.
We also know that there’s an FSM that recognizes the regular language a*b*c*, i.e,

the language consisting of some number of a’s followed by some (possibly different) number
of b’s followed by some (possibly different) number of c’s. Call this FSM F.

Then F intersect P is the intersection of a regular language and a context free
language, so by #3 the resulting language is context free.

But this leads to a problem. Specifically,
a*b*c* intersect A =

a*b*c* intersect { w | w in {a, b, c}* and contains an equal number of a's, b's, and c's}
is the language containing equal numbers of a, b, and c in that order. This is just

FOCS Fall 2004 Written Assignment 3 Solution Set Page 10 of 12

anbncn

which is not context free. So assuming that A is context free leads to a contradiction,
meaning that A must not be context free.

Karnaugh Maps

1. Draw the Karnaugh maps for the following functions:

• Parity, i.e., the function (on four inputs) that is true if the number of true inputs is
even

q0, q1
Parity

00 01 11 10

00 0 1 0 1

01 1 0 1 0

11 0 1 0 1

q2,
q3

10 1 0 1 0

• (q0 v q1) ^ (q2 v q3)
q0, q1q0 v q1)

 ^
(q2 v q3) 00 01 11 10

00 0 0 0 0

01 0 1 1 1

11 0 1 1 1

q2,
q3

10 0 1 1 1

FOCS Fall 2004 Written Assignment 3 Solution Set Page 11 of 12

• q0 -> ((q1 ^ q2) v q3)

We begin by observing that this is not(q0) or ((q1 and q2) or q3. (Why?)

q0, q1q0 ->
((q1 ^ q2)
 v q3) 00 01 11 10

00 1 1 0 0

01 1 1 1 1

11 1 1 1 1

q2,
q3

10 1 1 1 0

2. Populate a four-variable Karnaugh map with the formula made true by the truth
assignment corresponding to that square. For example, if q0 is false, q1 is true, q2 is true,
and q3 is false, the truth assignment might be written as as not(q0), q1, q2, not(q3) (but
that renders extremely poorly on the wiki; you can use the overbar notation that makes it
prettier!).

q0, q1
Truth
values 00 01 11 10

00
_ _ _ _
q0q1q2q3

_ _ _
q0q1q2q3

 _ _
q0q1q2q3

 _ _ _
q0q1q2q3

01
_ _ _ .
q0q1q2q3

_ _ .
q0q1q2q3

 _ .
q0q1q2q3

 _ _ .
q0q1q2q3

11
_ _ .
q0q1q2q3

_ .
q0q1q2q3

 .
q0q1q2q3

 _ .
q0q1q2q3

q2,
q3

10
_ _ _
q0q1q2q3

_ _
q0q1q2q3

 _
q0q1q2q3

 _ _
q0q1q2q3

3. There is an important observation to be made about the formulae in adjacent squares.
What simple property can be stated about every pair of adjacent squares (two squares
sharing a top, bottom, or side) in a Karnaugh map?

The truth assignments in any two adjacent squares differ in the truth value assigned to
exactly one variable.

FOCS Fall 2004 Written Assignment 3 Solution Set Page 12 of 12

4. (Hopefully) observe that this property holds for some non-adjacent squares as well.
However, these squares can be made adjacent by wrapping the right edge of the Karnaugh
map around to meet its left edge and, simultaneously, wrapping the top to meet the bottom.
Explain.

The property in #3 holds because moving horizontally or vertically changes the bit pattern
by one bit. This is true at the edges as well; 10 wraps around to differ from 00 by only
one bit.

5. One can use a Karnaugh map to read off formulae for boolean operations in disjunctive
normal form. For example, OR can be expressed as not(q0)q1 vq0 not(q1) vq0 q1 simply by
reading the formulae corresponding to the squares with 1s. Using this simple-minded
method, how many booleans would appear in the formula corresponding to a kvariable
Karnaugh map with n1s? (Hint: for the 2-variable function OR, with 3 1s, the answer is 6.)

For a k-variable Karnaugh map with n 1s, the naïve DNF formulation of the function is k
variables per clause and n clauses, i.e., nk.

6. Fortunately, the formula for OR can be simplified by combining terms. (Shockingly
enough, it reduces to q0 vq1) In a traditional Karnaugh map -- such as AND, OR, or XOR,
above, but including the larger variants -- suppose that an mxnrectangular region contains
exclusively 1s. (For example, in the Karnaugh map for OR, the second column is a 2x1
region of 1s and the second row is a 1x2 region of 1s.) What does this tell you about the
formula corresponding to this Karnaugh map? In particular, if you have a k-variable
Karnaugh map with an mxnrectangular region of 1s, how many variables would that region
require to represent in disjunctive normal form under the naive method of the previous
question? How many does it in fact require?

For a k-variable Karnaugh map, an mxn rectangular region can be represented using a
single conjunction of k – log2 mn variables. For example, each of the two rectangles in
the Karnaugh map for OR requires 2 – (log2 2) = 2 – 1 = 1 variable to express. Thus, the
simplest representation of OR in DNF is 2 variables long, a considerable simplification over
the naïve representation (from problem 5), which is 6 variables long.

