
FOCS Assignment 4 Solution Set Page 1 of 8

WrittenAssignment4 Solution Set
Predicate Logic

1. Assume that you have logical predicates IsParentOf(X,!Y) , which is true of X and
Y whenever X is Y's parent, and IsFemale(X) , which is true iff Xis female. Give
predicate calculus statements that define IsMotherOf ,IsFatherOf ,IsChildOf
,IsSonOf ,IsDaughterOf ,IsMale in terms of IsParentOf and IsFemale (as well as any
other predicates you define).

" x, y . [IsMotherOf(x,y) <=> (IsParentOf(x,y) Ÿ IsFemale(x))]
" x . [IsMale(x) <=> ÿIsFemale(x)]
" x, y . [IsFatherOf(x,y) <=> (IsParentOf(x,y) Ÿ IsMale(x))]
" x, y . [IsChildOf(x,y) <=> IsParentOf(y,x)]
" x, y . [IsDaughterOf(x,y) <=> (IsChildOf(x,y) Ÿ IsFemale(x))]
" x, y . [IsSonOf(x,y) <=> (IsChildOf(x,y) Ÿ IsMale(x))]

Note that the biconditional (here written <=>) is equivalent to two conditionals:
(A => B) Ÿ (B => A) is the same as A <=> B, as is (A Ÿ B) ⁄ (ÿA Ÿ ÿB). Because
these are definitions, they are appropriately biconditional – either side is the same
as the other – but you may not need the full biconditional for the proof in the
final problem of this section.

2. Using the additional predicate AreMarried(X,Y) , write rules that enforce the
symmetry of marriage and the constraints that the spouse of your parent is also
your parent and the child of your spouse is also your child.

" x, y . [AreMarried(x,y) <=> AreMarried(y,x)]
" x, y, z . [(AreMarried(x,y) Ÿ IsParentOf(x,z)) => IsParentOf(y,z)]

Note that this last is not a biconditional; if x and y are married and x is z’s parent,
then y is z’s (possibly step)parent, but it’s possible that y is z’s parent without
being married to any x.

3. Add rules for grandparent/grandchild derived from the above rules. Provide at
least the grandfather gendered version; you may include or omit the others as you
wish.

" x, z . [($ y . [IsParentOf (x,y) Ÿ IsParentOf(y,z)]) => IsGrandparentOf(x,z)]
" x, y . [(IsGrandparentOf(x,y) Ÿ IsMale(x)) <=> IsGrandfatherOf(x,y)]

An alternative to the last definition would be

" x, z . [($ y . [IsFatherOf(x,y) Ÿ IsParentOf(y,z)]) <=> IsGrandfatherOf(x,z)]

FOCS Assignment 4 Solution Set Page 2 of 8

4. At this point, for inspiration, you may wish to visit
http://www.transload.net/~terrisfunnypages/songs/grandp.html (preferably with
audio turned on) or http://www.wwco.com/gean/grandpa/ (you'll have to explicitly
visit the .wav file, but the animation is pretty good). You are in effect going to solve
problem 12 from page 78 of Luger (the Logic handout). Here's the setup:

Assume the following:

a. AreMarried (I, W)
b. IsMotherOf (W, D)
c. IsFatherOf (F, I)
d. AreMarried (F, D)
e. IsSonOf (S 1, W)
f. IsSonOf (S 2, D)
g. IsMale (I)

Prove that IsGrandfatherOf(!I,!I!).

1. IsMotherOf(W, D) Assumption b.
2. " x, y . [IsMotherOf(x,y) <=> (IsParentOf(x,y) Ÿ IsFemale(x))] Definition IsMotherOf
3. IsMotherOf(W, D) <=> (IsParentOf(W, D) Ÿ IsFemale(W)) Universal instantiation

(AKA universal
elimination) of #2
(substituting W for x
and D for y, both
universally quantified
variables)

4. [IsMotherOf(W, D) => (IsParentOf(W, D) Ÿ IsFemale(W))] Ÿ
[(IsParentOf(W, D) Ÿ IsFemale(W)) => IsMotherOf(W, D)]

Definition <=> applied
to #3

5. IsMotherOf(W, D) => (IsParentOf(W, D) Ÿ IsFemale(W)) And elimination (left
sided) from #4
(from A Ÿ B infer A)

6. IsParentOf(W, D) Ÿ IsFemale(W) Modus ponens (AKA
implication elimination)
from #5 and #1
(from A => B and A
infer B)

7. IsParentOf(W, D) And elimination (left
sided) from #6

8. AreMarried(I, W) Assumption a
9. AreMarried(I, W) Ÿ IsParentOf(W, D) And introduction from

#8 and #7
(from A and B infer
A Ÿ B)

FOCS Assignment 4 Solution Set Page 3 of 8

10. " x, y, z . [(AreMarried(x,y) Ÿ IsParentOf(x,z)) =>
IsParentOf(y,z)]

(Step)parent rule
from part 2.

11. (AreMarried(I, W) Ÿ IsParentOf(W, D)) => IsParentOf(I, D) Universal instantiation
of #10 (substituting I
for x, W for y, and D
for Z)

12. IsParentOf(I, D) Modus ponens from
#11 and #9

13. IsMale(I) Assumption g
14. IsParentOf(I, D) Ÿ IsMale(I) And introduction from

#12 and #13
15. " x, y . [IsFatherOf(x,y) <=> (IsParentOf(x,y) Ÿ IsMale(x))] Definition IsFatherOf
16. IsFatherOf(I, D) <=> (IsParentOf(I, D) Ÿ IsMale(I)) Universal instantiation

of #15 (substituting I
for x and D for y)

17. [IsFatherOf(I, D) => (IsParentOf(I, D) Ÿ IsMale(I))]
Ÿ [(IsParentOf(I, D) Ÿ IsMale(I)) => IsFatherOf(I, D)]

Definition biconditional
from #16

18. (IsParentOf(I, D) Ÿ IsMale(I)) => IsFatherOf(I, D) And elimination (right
sided) from #17
(from A Ÿ B infer B)

19. IsFatherOf(I, D) Modus ponens from
#19 and #14

20. " x, y . [IsFatherOf(x,y) <=> (IsParentOf(x,y) Ÿ IsMale(x))] Definition IsFatherOf
(also #15)

21. IsFatherOf(F, I) <=> (IsParentOf(F, I) Ÿ IsMale(F)) Universal instantiation
of #20 (substituting F
for x and I for y)

22. [IsFatherOf(F, I) => (IsParentOf(F, I) Ÿ IsMale(F))]
Ÿ [(IsParentOf(F, I) Ÿ IsMale(F)) => IsFatherOf(F, I)]

Definition biconditional
from #21

23. IsFatherOf(F, I) => (IsParentOf(F, I) Ÿ IsMale(F)) And elimination (left
sided) from #22

24. IsFatherOf(F, I) Assumption c
25. IsParentOf(F, I) Ÿ IsMale(F) Modus ponens from

#23 and #24
26. IsParentOf(F, I) And elimination (left

sided) from #25
27. AreMarried(F, D) Assumption d
28. AreMarried(F, D) Ÿ IsParentOf(F, I) And introduction from

#27 and #26
29. " x, y, z . [(AreMarried(x,y) Ÿ IsParentOf(x,z)) =>

IsParentOf(y,z)]
(Step)parent rule
from part 2 (also
#10)

FOCS Assignment 4 Solution Set Page 4 of 8

30. (AreMarried(F, D) Ÿ IsParentOf(F, I)) => IsParentOf(D, I) Universal instantiation
of #29 (substituting F
for x, D for y, and I
for z)

31. IsParentOf(D, I) Modus ponens from
#30 and #28

32. IsFatherOf(I, D) Ÿ IsParentOf(D, I) And introduction from
#19 and #31

33. $ y . [IsFatherOf(I, y) Ÿ IsParentOf(y, I)] Existential
generalization (AKA
existential
introduction) of #32
(substitution of
existentially
quantified y for D)

34. " x, y . [($ y . [IsFatherOf(x,y) Ÿ IsParentOf(y,z)]) <=>
IsGrandfatherOf(x,z)]

2d definition of
IsGrandFatherOf

35. [($ y . [IsFatherOf(I, y) Ÿ IsParentOf(y, I)]) <=>
IsGrandfatherOf(I, I)]

Universal instantiation
from #34
(substitution of I for
x and of I for y, both
universally quantified
variables)

36. [($ y . [IsFatherOf(I, y) Ÿ IsParentOf(y, I)]) =>
 IsGrandfatherOf(I, I)]
Ÿ [IsGrandfatherOf(I, I) =>
 ($ y . [IsFatherOf(I, y) Ÿ IsParentOf(y, I)])]

Definition biconditional
for #35

37. ($ y . [IsFatherOf(I, y) Ÿ IsParentOf(y, I)]) =>
 IsGrandfatherOf(I, I)

And elimination (left
sided) from #36

38. IsGrandfatherOf(I, I). Modus ponens from
#37 and #33

FOCS Assignment 4 Solution Set Page 5 of 8

Prolog

1. The adventure game explanation tells you that Prolog will respond to the
following queries in this way:
 ?- location(fox, X).
 X = woods
 ?- connect(yard, X).
 X = house
 X = woods
Verify this, then explain why Prolog gives one answer to the first query and two to
the second. (To see this in action, you may have to hit aafter gprolog gives you the
first answer to connect(yard,X). This is because gprolog doesn't automatically
assume that you want all answers....)

2. You should see that the program's behavior is somewhat different from the
transcript at the top of the page. In particular, you can't get anywhere. This is
because one precondition for changing your location isn't met: your location needs to
be connected to where you're going. Remedy this problem by editing your code and
reconsulting it in. Verify that you can move from the house to the duck_pen and
back.

3. Now you can get to the duck_pen , but you still can't win. In order to win, you
need to make it possible to satisfy you_have(egg). Add rules to make it possible to
obtain the egg, but only if you are in the duck_pen . Verify the behavior of these
additions and demonstrate that it is now possible to win the game.

4. There are several other additions required to get the code to behave as indicated
in the transcript at the beginning of the game description. Extend the game with at
least one of these features, or add a different feature (and at least one new rule) of
your own choosing.

• Add the gate , making it necessary to open the gate in order to get into the
duck_pen .

• Add code to allow the ducks to get out of the duck_pen (when the gate is open,
if you have created a gate).

• Be creative....I'm sure that you can find something cool to add!

5. Louden 12.26 (with gprolog spelling): Explain the difference in Prolog between
the following two definitions of the sibling relationship:

sibling1(X,Y) :- X\=Y, parent(Z,X), parent(Z,Y).
sibling2(X,Y) :- parent(Z,X), parent(Z,Y), X\=Y.

where X\=Y means Xdoesn't unify with Y.

FOCS Assignment 4 Solution Set Page 6 of 8

:-dynamic(location/2).
:-dynamic(connected/2).
:-dynamic(is_open/1).

assert(X) :- X, !. % extra assertion method to prevent redundant assertions
assert(X) :- assertz(X). % (This is not necessary, but nice.)

location(egg, duck_pen).
location(ducks, duck_pen).
location(fox, woods).
location(you, house).

connected(duck_pen, yard) :- is_open(gate). % note changes in this predicate:
connected(yard, house). % - new name (connect is symmetric)
connected(yard, woods). % - intro'd gate in first clause

connect(X,Y) :- connected(X,Y), !. % Cuts are not strictly necessary here
connect(X,Y) :- connected(Y,X), !. % but minimize extra backtracking.
 % (Only one case can be true.)

gate_accessible(yard).
gate_accessible(duck_pen).

open(gate) :- location(you, X), gate_accessible(X),
 assert(is_open(gate)),
 write('The gate is open.'), nl, !. % Cut here is not strictly necessary
open(gate) :- % but minimizes extraneous can't reach
 write('You can\'t reach the gate from here.'), nl. % messages

shut(gate) :- location(you, X), gate_accessible(X),
 retract(is_open(gate)),
 write('The gate is shut.'), nl.

FOCS Assignment 4 Solution Set Page 7 of 8

take(X) :-
 location(you, L),
 location(X, L), !, % Cut here prevents extraneous can't reach
 retract(location(X, L)), % messages. Probably shouldn't have two
 assert(location(X, you)), % cuts, though!!
 write('You have the '), write(X), nl, !.
take(X) :-
 write('You can\'t reach the '),
 write(X),
 write(' from here. '),
 nl.

goto(X) :-
 location(you, L),
 connect(L, X),
 retract(location(you, L)),
 assert(location(you, X)),
 write('You are in the '), write(X), nl,!. % Cut to prevent extraneous backtracking
goto(_) :-
 write('You can\'t get there from here. '), nl.

fox :-
 location(ducks, yard),
 location(you, house),
 write(' The fox has taken a duck. '), nl.
fox.

ducks :-
 location(ducks, X),
 connect(X,Y),
 \+location(ducks,Y),
 random(Number), !, % Cut here is because ducks only get one shot at
 ducks_do(Number, Y). % moving per turn; not extraneous at all!!
ducks.

ducks_do(Number, Where) :-
 Number > 0.8,
 assert(location(ducks, Where)),
 write(' The ducks are in the '), write(Where), nl, !. % If ducks move,
ducks_do(_, _) :- % they don't also
 write(' The ducks are staying put for now.'), nl. % stay put!

FOCS Assignment 4 Solution Set Page 8 of 8

go :- done.
go :-
 write('>> '),
 read(X),
 call(X),
 fox,
 ducks,
 go, !. % minimize extraneous backtracking; if you get this far, don't back up!

done :-
 location(you, house),
 you_have(egg),
 write(' Thanks for getting the egg. '), nl.

you_have(X) :- location(X, you).

